Abstract
This review was to elucidate the fate of Bentazon(3-isopropyl- 1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide) and its metabolites in soil. Bentazon is rapidly degraded to form polar metabolites which are mostly adsorbed to soil components, such as humin or fulvic acid, as non extractable forms and mineralized into CO2 by light or micro-organisms in both aerobic or nonaerobic condition. The degradation of Bentazon is dependent on the rate of organic matters in soil and the use of land for the tillage. The degradation rate is decreased as the amount of organic matters in soil increases and if the land is under use for tillage. Sorption and mobility of Bentazon depends on soil pH and the content of organic matters in soil. Usually, the sorption of the metabolites of Bentazon is decreased with increase in the mobility and pH. Almost all of Bentazon is degraded within rhizosphere or forms conjugate bonds with soil organic matters before it reaches to the ground water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.