Abstract

The fate of arsenate (As(V) ) generated by microbial arsenite (As(III) ) oxidation is poorly understood. Agrobacterium tumefaciens wild-type strain (GW4) was studied to determine how the cell copes with As(V) generated in batch culture. GW4 grown heterotrophically with mannitol used As(III) as a supplemental energy supply as reflected by enhanced growth and increased cellular levels of NADH and ATP. Under low phosphate (Pi) conditions and presence of As(III) oxidation, up to ∼ 50% of the resulting As(V) was taken up and found associated with the periplasm, membrane or cytoplasm fractions of the cells. Arsenic was found associated with proteins and polar lipids, but not in nucleic acids or sugars. Thin-layer chromatography and gas chromatography-mass spectrometry analysis suggested the presence of arsenolipids in membranes, presumably as part of the bilayer structure of the cell membrane and replacing Pi under Pi-limiting conditions. The potential role of a Pi-binding protein (PstS) for As(V) uptake was assessed with the His-tag purified protein. Intrinsic tryptophan fluorescence spectra analysis suggests that PstS can bind As(V) , but with lower affinity as compared with Pi. In early stationary phase cells, the As(V) : Pi ratio was approximately 4.3 and accompanied by an altered cell ultrastructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.