Abstract

Natural attenuation processes affecting 2,4,6-trinitrotoluene (TNT) were determined within loams for two study areas at the former Explosives Factory Maribyrnong, Australia. TNT fate and transport was investigated through spectrophotometric/High Performance Liquid Chromatography (HPLC) analyses of soil and groundwater, adsorption and microcosm testwork. A five tonne crystalline TNT source zone delineated within near surface soils at the base of a TNT process waste lagoon was found to be supplying aqueous TNT loading (7 ppm) to subsurface soils and groundwater. The resultant plume was localized within the loam aquitard due to a combination of natural attenuation processes and hydrogeological constraints, including low hydraulic conductivity and upward hydraulic gradients. Freundlich described sorptive partitioning was the main TNT sink (KF = 29 mL/g), while transformation rates were moderate (1.01 × 10-4 h-1) under the aerobic conditions. Increasing 2-amino-4,6-dinitrotoluene predominance over 4-amino-2,6-dinitrotoluene was discovered with depth (in situ) and time (microcosms). Simplified dissolution rate calculations indicate that without mitigation of the TNT source, contaminant persistence within the vadose zone may approach 2000 years, while ATRANS20 simulations demonstrate that the TNT plume propagates very slowly along the flow path within the aquitard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.