Abstract

The prevalence and adverse impacts of microplastics requires the identification of science-based abatement measures. Electrocoagulation treatment is a cost-effective oxidation process that removes numerous pollutants, including to some extent, microplastics. The performance of a custom-built electrocoagulation reactor was determined by calculating the removal efficiency. The effects of the oxidation process on polymer types (polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP)) and shapes (fibres and fragments) were investigated in synthetic wastewater and laundry wastewater. The calculated removal efficiency suggested that electrocoagulation treatment was an effective technology for microplastics abatement. More fibres tended to be removed than fragments, viz. 92% fibres removed versus 88% fragments. The findings also demonstrated that specific polymers were preferentially removed, viz. PET > LDPE > PP > PA. Further analysis indicated that the electrocoagulation treatment affected microplastic polymers physically, viz. flaking and changed surface conditions, as well as chemically, viz. changes in vibrational energies of C–O–C stretching bonds, C=O stretching bonds, C–H stretching bonds and formation of reactive oxygen species (ROS). Our findings indicate that whilst seemingly effective, electrocoagulation treatment induces changes to microplastic polymers that could beneficially lead to degradation, and/or further fragmentation or breakdown and thereby potentially generating more bioavailable toxic nanoplastic byproducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call