Abstract

The fate and removal behavior of 12 antibiotics from 5 classes were investigated in an osmotic membrane bioreactor (OMBR), along with their effects on the system performance. High overall removal of all the antibiotics (77.7–99.8%) was observed, resulting from their rejection by the forward osmosis membrane (>90%). Biodegradation (ranging from 16.6% to 94.4%) was a significant removal pathway for all the antibiotics except ofloxacin, ciprofloxacin and roxithromycin. Sulfathiazole, enrofloxacin, and chlortetracycline showed the highest removal via biodegradation at 94.4%, 90.2%, and 78.9% respectively, followed by trimethoprim (68.2%), lomefloxacin (57.1%) and norfloxacin (53.2%). Sorption contributed to varying extent to their removal (at 2.0–30.1%); the highest was observed for ofloxacin and roxithromycin. No evident change was observed in the pollutant removal performance of the bioreactor even after 40 days of continuous exposure to these antibiotics (at 500 ng/L), with the overall TOC and NH4+-N removal maintained >98% and >97%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.