Abstract

Acetylacetone (AA), due to the peculiar enol-keto structures, has attracted wide scientific interests. In terms of photo-decolorization, it works much more efficiently than the well-known H2O2. However, there is very limited information on the photochemistry of AA in aqueous solutions. Herein, the photolysis kinetics, quantum yield, mass balance, decomposition pathway, and bioavailability of AA during UV irradiation were systematically investigated. It seems that photophysical processes predominated over photochemical ones when AA was irradiated with UV light. Although the quantum yield of AA (0.116) was much lower than that of H2O2 (1.0), the stronger light absorption of AA and the better overlap of the AA absorption spectrum with the solar emission spectrum, as well as the direct energy/electron transfer mechanisms, ensured its high efficiency in photochemical processes. The main degradation products of AA in photochemical processes were similar to the metabolic products in bio-fermentation. Besides, the irradiated AA solution showed a high bioavailability to the cells in activated sludge. Therefore, the UV/AA process might be a promising pre-treatment approach for bio-treatment. The results provide new insights into the photochemical fate and implication of β-diketones in aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.