Abstract
Polyacrylamide (PAM) is applied to 400000 irrigated hectares annually in the USA to control irrigation-induced erosion, yet the fate of dissolved PAM applied in irrigation water is not well documented. We determined the fate of PAM added to furrow streams under two treatments: Initial-10, 10 mg L(-1) PAM product applied only during the initial hours of the irrigation, and Cont-1, 1.0 mg L(-1) PAM product applied continuously during the entire irrigation. The study measured PAM concentrations in 167-m-long PAM-treated furrow streams and along a 530-m tail ditch that received this runoff. Soil was Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) with 1.5% slope. Samples were taken at three times during the irrigations, both during and after PAM application. Polyacrylamide was adsorbed to soil and removed from solution as the streams traversed the soil-lined channels. The removal rate increased with stream sediment concentration. Stream sediment concentrations were higher when PAM concentrations were <2 mg L(-1) a.i., for early irrigations, and when untreated tributary flows combined with the stream. In these cases, PAM concentration decreased to undetectable levels over the flow lengths used in this study. When inflows contained >6 mg L(-1) PAM a.i., stream sediment concentrations were minimal and PAM concentrations did not change down the furrow, though they decreased to undetectable levels within 0.5 h after application ceased. One percent of applied PAM was lost in tail-ditch runoff. This loss could have been eliminated by treating only the furrow advance or not treating the last two irrigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.