Abstract

The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.