Abstract

The current sources of copper and zinc in municipal wastewaters have been considered, and the changes in the concentrations and quantities of these two elements entering sewage treatment works over the last three decades have been calculated. The concentrations and quantities of the heavy metals cadmium, chromium, copper, mercury, nickel, lead and zinc, entering UK sewage treatment works, have been reduced by between 50% and 90% during this period. However, the reductions in copper and zinc appear to be at the lower end of these ranges and thus remain a cause for concern, particularly their concentrations in sewage effluents and their potential environmental impacts on receiving waters. Bench studies have been undertaken to predict removals by three types of biological wastewater treatment plants: trickling filters, conventional activated sludge and membrane bioreactors, to determine if any of these processes are more efficacious for the removal of these metals. These results suggest that, despite membrane bioreactor biomass achieving the lowest effluent suspended solids concentration and having the lowest effluent chemical oxygen demand, which is accepted as a surrogate measure of organic chemical chelating ability of the aqueous phase, they produce the highest effluent values for the two metals in this study (copper and zinc). Removals of zinc and copper in biological wastewater treatment processes are probably primarily determined by those factors influencing metal solubility in the biomass matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.