Abstract

CD4(+) T cells play a central role in inflammatory heart disease, implicating a cytokine product associated with Th cell effector function as a necessary mediator of this pathophysiology. IFN-γ-deficient mice developed severe experimental autoimmune myocarditis (EAM), in which mice are immunized with cardiac myosin peptide, whereas IL-17A-deficient mice were protected from progression to dilated cardiomyopathy. We generated IFN-γ(-/-)IL-17A(-/-) mice to assess whether IL-17 signaling was responsible for the severe EAM of IFN-γ(-/-) mice. Surprisingly, IFN-γ(-/-)IL-17A(-/-) mice developed a rapidly fatal EAM. Eosinophils constituted a third of infiltrating leukocytes, qualifying this disease as eosinophilic myocarditis. We found increased cardiac production of CCL11/eotaxin, as well as Th2 deviation, among heart-infiltrating CD4(+) cells. Ablation of eosinophil development improved survival of IFN-γ(-/-)IL-17A(-/-) mice, demonstrating the necessity of eosinophils in fatal heart failure. The severe and rapidly fatal autoimmune inflammation that developed in the combined absence of IFN-γ and IL-17A constitutes a novel model of eosinophilic heart disease in humans. This is also, to our knowledge, the first demonstration that eosinophils have the capacity to act as necessary mediators of morbidity in an autoimmune process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.