Abstract

At the start of 2018, multiple incidents of dog illnesses were reported following consumption of marine species washed up onto the beaches of eastern England after winter storms. Over a two-week period, nine confirmed illnesses including two canine deaths were recorded. Symptoms in the affected dogs included sickness, loss of motor control, and muscle paralysis. Samples of flatfish, starfish, and crab from the beaches in the affected areas were analysed for a suite of naturally occurring marine neurotoxins of dinoflagellate origin. Toxins causing paralytic shellfish poisoning (PSP) were detected and quantified using two independent chemical testing methods in samples of all three marine types, with concentrations over 14,000 µg saxitoxin (STX) eq/kg found in one starfish sample. Further evidence for PSP intoxication of the dogs was obtained with the positive identification of PSP toxins in a vomited crab sample from one deceased dog and in gastrointestinal samples collected post mortem from a second affected dog. Together, this is the first report providing evidence of starfish being implicated in a PSP intoxication case and the first report of PSP in canines.

Highlights

  • Paralytic shellfish toxins (PST) are naturally occurring compounds produced by some species of marine phytoplankton, such as Alexandrium spp., Gymnodinium catenatum, and Pyrodinium bahamense [1,2].These toxins can accumulate in bivalve molluscs through their filter feeding activities, consumption of which by humans and other mammals can result in illness

  • The results identified three saxitoxin analogues, with decarbamoyl saxitoxin the most prevalent, followed by STX

  • Multiple dog illnesses were reported after visiting beaches, following consumption of dead fish, starfish, and/or crab

Read more

Summary

Introduction

Paralytic shellfish toxins (PST) are naturally occurring compounds produced by some species of marine phytoplankton, such as Alexandrium spp., Gymnodinium catenatum, and Pyrodinium bahamense [1,2]. These toxins can accumulate in bivalve molluscs through their filter feeding activities, consumption of which by humans and other mammals can result in illness. No testing has been conducted for marine toxins in starfish in Europe to date, presumably given that these animals are considered unsuitable for consumption in European countries.such as PST, domoic molluscs, occurrence in other marine species is less reported

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call