Abstract

BackgroundPrevious studies found that FAT1 was recurrently mutated and aberrantly expressed in multiple cancers, and the loss function of FAT1 promoted the formation of cancer-initiating cells in several cancers. However, in some types of cancer, FAT1 upregulation could lead to epithelial-mesenchymal transition (EMT). The role of FAT1 in cancer progression, which appears to be cancer-type-specific, is largely unknown. MethodsQRT-PCR and immunochemistry were used to verify the expression of FAT1 in non-small cell lung cancer (NSCLC). QRT-PCR and Western blot were used to detect the influence of siFAT1 knockdown on the expression of potential targets of FAT1 in NSCLC cell lines. GEPIA, KM-plotter, CAMOIP, and ROC-Plotter were used to evaluate the association between FAT1 and clinical outcomes based on expression and clinical data from TCGA and immune checkpoint inhibitors (ICI) treated cohorts. ResultsWe found that FAT1 upregulation was associated with the activation of TGF-β and EMT signaling pathways in NSCLC. Patients with a high FAT1 expression level tend to have a poor prognosis and hard to benefit from ICI therapy. Genes involved in TGF-β/EMT signaling pathways (SERPINE1, TGFB1/2, and POSTN) were downregulated upon knockdown of FAT1. Genomic and immunologic analysis showed that high cancer-associated fibroblast (CAF) abundance, decreased CD8+ T cells infiltration, and low TMB/TNB were correlated with the upregulation of FAT1, thus promoting an immunosuppressive tumor microenvironment (TME) which influence the effect of ICI-therapy. ConclusionOur findings revealed the pattern of FAT1 upregulation in the TME of patients with NSCLC, and demonstrated its utility as a biomarker for unfavorable clinical outcomes, thereby providing a potential therapeutic target for NSCLC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call