Abstract

To evaluate the diagnostic performance of a newly developed single-scan phase-contrast water-fat imaging technique for fat suppression at 0.23T open magnet, compared to the conventional chemical shift selective fat suppression method at 1.5T, in the detection of experimental articular cartilage lesions. Sixty regions of 20 knee joint specimens of pigs with artificially created articular cartilage lesions were examined with 0.23T and 1.5T MR scanners. Sagittal fat-suppressed three-dimensional gradient-echo (3D GRE) images, obtained with the phase-contrast method at 0.23T, and fat-suppressed three-dimensional spoiled gradient recalled echo (3D SPGR) images, obtained with a chemical shift selective method at 1.5T, were evaluated. Diagnostic performance was analyzed. The conspicuity of the lesions, the amount of artifacts, and the uniformity of fat suppression were evaluated. The contrast-to-noise (CNR) values of cartilage-to-bone marrow, and cartilage-to-infrapatellar fat were calculated. At 0.23T, sensitivity and specificity were 80% and 95% for partial cartilage lesions (grade 2), and 91% and 100% for full-thickness lesions (grade 3). At 1.5T, sensitivity and specificity were 85% and 95% for grade 2 lesions, and 96% and 97% for grade 3 lesions. No significant difference was detected in the conspicuity of lesions. The uniformity of fat suppression was more constant with 3D SPGR images compared to 3D GRE images. More susceptibility artifacts, derived from the procedure of creating lesions, were detected at 1.5T. The cartilage-to-fat CNRs were significantly higher with high-field images. Phase-contrast method for fat suppression at 0.23T is a useful technique in detecting articular cartilage lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.