Abstract

Alcoholic and non-alcoholic steatohepatitis (ASH and NASH) constitute two major types of chronic liver disease with worldwide prevalence and are histologically indistinguishable with shared pathogenetic mechanisms. More importantly, they have synergistic interactions for liver pathology. Comparative studies on ASH and NASH have been hampered by the use of different animal models with confounding variables, particularly those with extreme genetic, toxic, and malnutrition etiologies. The mouse intragastric model circumvents these problems and reproduces the natural course and etiological background of ASH and NASH. Further, our recent work reproduces a profound synergism between the two in the model. Intracellular accumulation of neural lipids is a hallmark biochemical feature of ASH and NASH. Although impaired lipid oxidation and export may contribute to this pathological change, enhanced lipogenic regulation is frequently encountered, as characterized by induction of lipogenic or adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR gamma], liver X receptor alpha[LXR alpha], sterol-regulatory element-binding protein-1c [SREBP-1c]). In contrast, we have recently defined transdifferentiation of hepatic stellate cells (HSC), a pivotal event in liver fibrogenesis, as an 'antilipogenic' or 'anti-adipogenic' phenomenon. Thus, there is an apparent paradox between hepatocytes and HSC in steatohepatitis in terms of the outcome of lipogenic regulation. Our recent work suggests that defective insulin signaling in activated HSC may be responsible for this paradox. Further, activated Wnt signaling is implicated in 'anti-adipogenic' stellate cell transdifferentiation in liver fibrogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.