Abstract

The aim of the present study was to compare the intensity that elicits maximal fat oxidation (Fatmax) determined using a cycle-ergometer and a treadmill-based protocol. Twelve moderately trained male subjects (66.9 ± 1.8 mL · kg−1 · min−1) performed 2 graded exercise tests to exhaustion. One test was performed on a cycle ergometer while 1 test was performed on a motorized treadmill; stage duration during both trials was 3 minutes. Gas exchange measurements and heart rate (HR) recordings were performed throughout exercise. Fat oxidation rates were calculated using stoichiometric equations. Maximal fat oxidation rates were significantly higher during running compared with cycling (0.65 ± 0.05 v 0.47 ± 0.05 g · min−1). However, the intensity, which elicited maximal fat oxidation, was not significantly different between the cycle ergometer and treadmill test (62.1 ± 3.1 v 59.2 ± 2.8% Vo2max, respectively). Fat oxidation rates were significantly higher during the treadmill test compared with the cycle ergometer test from 55 to 80%Vo2max. Maximal oxygen uptake and maximal HR were significantly higher during the treadmill test. It was concluded that fat oxidation rates were higher during walking compared with cycling. Maximal fat oxidation was 28% higher when walking compared with cycling, but the intensity, which elicits maximal fat oxidation, is not different between these 2 exercise modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.