Abstract

AbstractOil‐in‐water emulsions stabilized with methylcellulose (MC) varied in stability depending on the composition of the fat phase. When droplets were composed entirely of liquid oil, MC was able to form a continuous, protective film around the droplets. Therefore, when two liquid oil droplets were brought into contact, they underwent extreme shape deformation but did not coalesce, even when excess force was used. Subsequently, interfacial crystals extending into the aqueous phase from palm kernel oil droplets were aimed into an entirely liquid oil droplet. The MC‐coated droplet would deform wherever the crystal contacted; however, the protruding crystals could not penetrate into the liquid oil droplet. Conversely, when the target droplet was composed of a small amount of solid fat that resulted in localized crystalline regions and the interfacial crystals of the second droplet were aimed at this region, they then easily pierced the droplet. This demonstrates that MC is an excellent stabilizer for liquid oil droplets but internal lipid crystals within fat globules can alter MC surface conformation to allow for crystal penetration and arrested coalescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.