Abstract

AbstractFat bloom in chocolate is a substantial problem that affects its sensory properties, such as texture and appearance. This phenomenon is because of diffuse light reflection on a roughened surface of chocolate, caused by structural changes of fat crystals subjected to various temperature conditions. The purpose of this study is to characterize the fat bloom formed through gradual two‐step cooling after exposure to temperatures (35–37 °C) slightly above the cocoa butter Form βV melting point (33.8 °C). To clarify the fat bloom formation process, the structural changes in cocoa butter and on the chocolate surface, at the dynamic thermal condition for bloom formation, was investigated using X‐ray diffraction (XRD), fluorescence light microscopy, and scanning electron microscopy (SEM). The results revealed that an entirely light brown fat bloom occurred, even in the absence of the Form βVI or other polymorphic transformation. Microscopic observation showed that the light brown appearance was because of the porous structure on the chocolate surface. This porous structure was formed by liquid oil moving inside of chocolate from the surface. The formation of a coarse network and the subsequent de‐oiling, because of movement of unsolidified liquid fat into the chocolate, appeared to be the main causes of bloom formation. Therefore, a coarsened fat network and oil movement besides the conventional principles of polymorphic transformation of cocoa butter should be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.