Abstract

DNA viruses are important infectious agents known to mediate a large number of human diseases, including cancer. Viral integration into the host genome and the formation of hybrid transcripts are also associated with increased pathogenicity. The high variability of viral genomes, however requires the use of sensitive ensemble hidden Markov models that add to the computational complexity, often requiring > 40 CPU-hours per sample. Here, we describe FastViFi, a fast 2-stage filtering method that reduces the computational burden. On simulated and cancer genomic data, FastViFi improved the running time by 2 orders of magnitude with comparable accuracy on challenging data sets. Recently published methods have focused on identification of location of viral integration into the human host genome using local assembly, but do not extend to RNA. To identify human viral hybrid transcripts, we additionally developed ensemble Hidden Markov Models for the Epstein Barr virus (EBV) to add to the models for Hepatitis B (HBV), Hepatitis C (HCV) viruses and the Human Papillomavirus (HPV), and used FastViFi to query RNA-seq data from Gastric cancer (EBV) and liver cancer (HBV/HCV). FastViFi ran in <10 minutes per sample and identified multiple hybrids that fuse viral and human genes suggesting new mechanisms for oncoviral pathogenicity. FastViFi is available at https://github.com/sara-javadzadeh/FastViFi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call