Abstract

More and more data are stored in cloud storage, which brings two major challenges. First, the modified files in the cloud should be quickly synchronized to ensure data consistency, e.g., delta synchronization (sync) achieves efficient cloud sync by synchronizing only the updated part of the file. Second, the huge data in the cloud needs to be deduplicated and encrypted, e.g., Message-Locked Encryption (MLE) implements data deduplication by encrypting the content among different users. However, when combined, a few updates in the content can cause large sync traffic amplification for both keys and ciphertext in the MLE-based cloud storage, significantly degrading the cloud sync efficiency. A feature-based encryption sync scheme, FeatureSync, is proposed to address the delta amplification problem. However, with further improvement of the network bandwidth, the performance of FeatureSync stagnates. In our preliminary experimental evaluations, we find that the bottleneck of the computational overhead in the high-bandwidth network environments is the main bottleneck in FeatureSync. In this article, we propose an enhanced feature-based encryption sync scheme FASTSync to optimize the performance of FeatureSync in high-bandwidth network environments. The performance evaluations on a lightweight prototype implementation of FASTSync show that FASTSync reduces the cloud sync time by 70.3% and the encryption time by 37.3%, on average, compared with FeatureSync.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call