Abstract

A fast‐swelling superabsorbent composite was prepared by solution polymerization of acrylate, acrylamide, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid and oxidized starch phosphate. Ethanol, propyl alcohol, butyl alcohol, and sodium bicarbonate were used as foaming agents to produce fast‐swelling characteristics. The structure of the superabsorbent composite was characterized using Fourier transform infrared spectroscopy (FTIR). The influences of the amount of water, acrylamide, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid, oxidized starch phosphate, initiator, and trihydroxymethyl propane glycidol ether, as well as the neutralization degree of acrylic acid on the equilibrium swelling degree and swelling rate of the superabsorbent composite, were investigated. The equilibrium swelling degree of the superabsorbent composite prepared in a 0.9 wt% NaCl aqueous solution was 52 g g−1, and the swelling rate reached 0.86 mL g−1 s−1. The swelling kinetics was also investigated, and the results indicate that swelling of the superabsorbent composites obeys Schott's pseudo second‐order kinetics model. POLYM. ENG. SCI., 56:1267–1274, 2016. © 2016 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.