Abstract

Fasting has been shown to limit ischemic injury and improve functional activity after global ischemia. Because calcium overload is considered a mechanism of ischemic injury, we hypothesized that fasting would limit the accumulation of intracellular calcium [Ca]i during ischemia, potentially due to reduced accumulation of intracellular sodium [Na]i. To address this hypothesis, hearts isolated from rats fed either a normal diet or fasted for 24 hours underwent 20 min of global ischemia at 37 degrees. In addition to functional parameters, [Na]i and [Ca]i were measured using 21Na and 19F spectroscopy using thulium-DOTP-5 and 5F-BAPTA, respectively. In vitro measurement of sarcoplasmic reticulum calcium uptake and release, as well as activity of the sarcolemmal Na-Ca exchanger, was performed in hearts from fed and fasted animals under baseline and ischemic conditions. Hearts from fasted animals showed greater recovery of developed pressure (37+/-9 vs. 11+/-6 cm H2O, p < 0.05) and less contracture (end-diastolic pressure 25+/-2 vs. 47+/-2 cm H2O, p < 0.05) by the end of the reperfusion period. [Na]i was similar in the 2 groups during the first half of the ischemic period, albeit with a higher concentration of [Na]i in hearts from fed compared to fasted animals at reperfusion. Fasting markedly limited calcium accumulation during ischemia, with end-ischemic calcium being 419+/-46 nM in the hearts from fasted animals and 858+/-140 nM in the hearts from fed animals (p < 0.01). There was no significant effect of fasting on calcium uptake or release by the SR, nor on sarcolemmal Na-Ca exchange activity. Fasting for 24 hours improves functional recovery and markedly limits [Ca]i accumulation during ischemia and early reperfusion. The mechanism for this phenomenon remains to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.