Abstract
The tiltrotor aircraft has unique flight dynamics characteristics because of the extensive aerodynamic interference and the unique control strategy. Inverse simulation offers an opportunity to study a vehicle's performance during manoeuvring flights. In this paper, an improved inverse simulation method is developed with an Automatic Differentiation (AD) approach embedded in the code based on the verified flight dynamics model of the tiltrotor aircraft. The AD algorithm would accelerate the computational rate of the inverse simulation process and make it achieve faster-than-realtime capability. Then, the XV-15 tiltrotor's control inputs and flight states encountered during a pop-up manoeuvre are investigated using this AD-augmented inverse simulation method, and the real-time capability of this method is also evaluated. The results indicate that the proposed method guarantees both accuracy and faster-than-realtime calculation performance. Lastly, the tiltrotor's manoeuvrability is assessed by executing this manoeuvre in different flight states and manoeuvre settings. Lastly, an envelope involving the velocity and nacelle incidence angle is calculated to indicate the safety region to achieve this pop-up manoeuvre.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.