Abstract

In somewhat homomorphic encryption schemes (e.g. B/FV, BGV) the size of ciphertexts and the execution performance of homomorphic operations depends heavily on the multiplicative depth. The multiplicative depth is the maximal number of consecutive multiplications for which the homomorphic encryption scheme was parameterized. In this work we improve a heuristic for multiplicative depth minimization of Boolean circuits found in the literature. In particular, a new circuit rewriting operator is introduced, the so called cone rewrite operator. The results we obtain using the new method are relevant in terms of accuracy and performance. The multiplicative depths for a benchmark of Boolean circuits is highly improved and the execution time of the new heuristic is significantly lower. The proposed rewrite operator and heuristic are not limited to Boolean circuits, but can also be used for arithmetic circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.