Abstract

AbstractEdge‐Path bundling is a recent edge bundling approach that does not incur ambiguities caused by bundling disconnected edges together. Although the approach produces less ambiguous bundlings, it suffers from high computational cost. In this paper, we present a new Edge‐Path bundling approach that increases the computational speed of the algorithm without reducing the quality of the bundling. First, we demonstrate that biconnected components can be processed separately in an Edge‐Path bundling of a graph without changing the result. Then, we present a new edge bundling algorithm that is based on observing and exploiting a strong relationship between Edge‐Path bundling and graph spanners. Although the worst case complexity of the approach is the same as of the original Edge‐Path bundling algorithm, we conduct experiments to demonstrate that the new approach is 5–256 times faster than Edge‐Path bundling depending on the dataset, which brings its practical running time more in line with traditional edge bundling algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.