Abstract

Deep-predictive-coding networks (DPCNs) are hierarchical, generative models. They rely on feed-forward and feedback connections to modulate latent feature representations of stimuli in a dynamic and context-sensitive manner. A crucial element of DPCNs is a forward-backward inference procedure to uncover sparse, invariant features. However, this inference is a major computational bottleneck. It severely limits the network depth due to learning stagnation. Here, we prove why this bottleneck occurs. We then propose a new forward-inference strategy based on accelerated proximal gradients. This strategy has faster theoretical convergence guarantees than the one used for DPCNs. It overcomes learning stagnation. We also demonstrate that it permits constructing deep and wide predictive-coding networks. Such convolutional networks implement receptive fields that capture well the entire classes of objects on which the networks are trained. This improves the feature representations compared with our lab's previous nonconvolutional and convolutional DPCNs. It yields unsupervised object recognition that surpass convolutional autoencoders and is on par with convolutional networks trained in a supervised manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.