Abstract
Combining powerful parallel frameworks and on-demand commodity hardware, cloud computing has made both analytics and decision support systems canonical to enterprises of all sizes. Associated with unprecedented volumes of data stacked by such companies, filtering and retrieving them are pressing challenges. This data is often organized in star schemas, in which Star Joins are ubiquitous and expensive operations. In particular, excessive disk spill and network communication are tight bottlenecks for all current MapReduce or Spark solutions. Here, we propose two efficient solutions that drop the computation time by at least 60%: the Spark Bloom-Filtered Cascade Join (SBFCJ) and the Spark Broadcast Join (SBJ). Conversely, a direct Spark implementation of a sequence of joins renders poor performance, showcasing the importance of further filtering for minimal disk spill and network communication. Finally, while SBJ is twice faster when memory per executor is large enough, SBFCJ is remarkably resilient to low memory scenarios. Both algorithms pose very competitive solutions to Star Joins in the cloud.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.