Abstract

In position measurements by far-range photogrammetry, the scale between object and image has to be calibrated. It means to get the parameters of the perspective projection matrix. Because the image sensor of fast-camera is CMOS, there are many uncertain distortion factors. It is hard to describe the scale between object and image for the traditional calibration based on the mathematical model. In this paper, a new method for calibrating stereo vision systems with neural networks is described. A linear method is used for 3D position estimation and its error is corrected by neural networks. Compared with DLT (Direct Linear Transformation) and direct mapping by neural networks, the accuracy is improved. We have used this method in the drop point measurement of an object in high speed successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.