Abstract

Zernike polynomial orthogonality, an established mathematical principle, is leveraged with the Gauss-Legendre quadrature rule in a rapid novel approach to fitting data over a circular domain. This approach provides significantly faster fitting speeds, in the order of thousands of times, while maintaining comparable error rates achieved with conventional least-square fitting techniques. We demonstrate the technique for fitting mid-spatial-frequencies (MSF) prevalent in small-tool-manufacturing typical of aspheric and freeform optics that are poised to soon permeate a wide range of optical technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.