Abstract
X-ray ptychography, a scanning coherent diffraction imaging technique, is one of the most used techniques at synchrotron facilities for high resolution imaging, with applications spanning from life science to nano-electronics. In the recent years there has been a great effort to make the technique faster to enable high throughput nanoscale imaging. Here we apply a fast ptychography scanning method to image in 3D 106μm3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10^6\\upmu \\mathrm{{m}}^3$$\\end{document} of brain-like phantom at 3 kHz, in a 7 h acquisition with a resolution of 270 nm. We then present the latest advances in fast ptychography by showing 2D images acquired at 110 kHz by combining the fast-acquisition scheme with a high-acquisition rate prototype detector from DECTRIS Ltd. We finally review the experimental outcome and discuss the prospective use of fast ptychography schemes for the investigation of mm3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^{3}$$\\end{document} size samples of brain-like phantom, by extrapolating the current results to the high coherent flux scenario of diffraction limited storage rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.