Abstract
X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with X-ray. However, challenges remain in dynamic XLCT imaging, where short scan time, good spatial resolution, and whole-body field of view should be considered simultaneously. In this paper, by the use of a single-view XLCT reconstruction method based on a compressive sensing (CS) technique, incorporating a cone beam XLCT imaging system, we implement fast 3-D XLCT imaging. To evaluate the performance of the method, two types of phantom experiments were performed based on a cone beam XLCT imaging system. In Case 1, one tube filled with the X-ray-excitable nanophosphor (Gd 2O 3 :Eu (3+)) was immerged in different positions in the phantom to evaluate the effect of the source position on single-view XLCT reconstruction accuracy. In Case 2, two tubes filled with Gd 2O 3 :Eu (3+) were immerged in different heights in the phantom to evaluate the whole-body imaging performance of single-view XLCT reconstruction. The experimental results indicated that the tubes used in previous phantom experiments can be resolved from single-view XCLT reconstruction images. The location error is less than 1.2 mm. In addition, since only one view data are needed to implement 3-D XLCT imaging, the acquisition time can be greatly reduced (∼1 frame/s) compared with previous XLCT systems. Hence, the technique is suited for imaging the fast distribution of the X-ray-excitable nanophosphors within a biological object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.