Abstract

Caenorhabditis elegans (C. elegans) is an ideal model organism for studying neuronal functions at the system level. This article develops a customized system for whole-body motor neuron calcium imaging of freely moving C. elegans without the coverslip pressed. Firstly, we proposed a fast centerline localization algorithm that could deal with most topology-variant cases costing only 6ms for one frame, not only benefits for real-time localization but also for post-analysis. Secondly, we implemented a full-time two-axis synchronized motion strategy by adaptively adjusting the motion parameters of two motors in every short-term motion step (~50 ms). Following the above motion tracking configuration, the tracking performance of our system has been demonstrated to completely support the high spatiotemporal resolution calcium imaging on whole-body motor neurons of wild-type (N2) worms as well as two mutants (unc-2, unc-9), even the instantaneous speed of worm moving without coverslip pressed was extremely up to 400 μm/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.