Abstract

We demonstrate for the first time a strain-controlled all polarization-maintaining (PM) fiber Lyot filter based on a piezoelectric lead zirconate titanate (PZT) fiber stretcher. This filter is implemented in an all-PM mode-locked fiber laser to serve as a novel wavelength-tuning mechanism for fast wavelength sweeping. The center wavelength of the output laser can be tuned across a range from 1540 nm to 1567 nm linearly. And the strain sensitivity achieved in the proposed all-PM fiber Lyot filter is 0.052nm/με, which is 43 times higher than that achievable by other strain-controlled filters such as a fiber Bragg grating filter (0.0012nm/με). Wavelength-swept rates up to 500 Hz and wavelength tuning speeds up to 13,000 nm/s are demonstrated, which is hundreds of times faster than what is attainable with conventional sub-picosecond mode-locked lasers based on mechanical tuning methods. This highly repeatable and swift wavelength-tunable all-PM fiber mode-locked laser is a promising source for applications requiring fast wavelength tunability, such as coherent Raman microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call