Abstract

In this Letter, we propose a compact multimode fiber endoscope which employs wavefront shaping with a digital micromirror device (DMD). An automated single calibration step allows us to correct for optical misalignment, and the method achieves accurate focusing at various depths in the sample through rapid switching of holographic patterns by the DMD. The speed of calibration is one or two orders of magnitude faster than existing methods. The method, single calibration multimode fiber imaging (SCMFI), is compared with existing methods, and its performance is validated. We show a near diffraction limited focusing capability at imaging depths up to 110 µm with near constant lateral resolutions of 1.4 µm. Finally, we demonstrate the method for the imaging of small fluorescent beads embedded in a 3D matrix. The results indicate excellent power penetration and focusing performance. Combined with the high speed of SCMFI, this paves the way for volumetric tissue endoscopy at depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call