Abstract

BackgroundN170 effects associated with visual words may be related to perceptual expertise effects that have been demonstrated for faces and other extensively studied classes of visual stimuli. Although face and other object expertise effects are typically bilateral or right-lateralized, the spatial topography of reading-related N170 effects are often left-lateralized, providing potential insights into the unique aspects of reading-related perceptual expertise.MethodsExtending previous research in German [1], we use a high-density channel array to characterize the N170 topography for reading-related perceptual expertise in English, a language with inconsistent spelling-to-sound mapping. N170 effects related to overall reading-related expertise are defined by contrasting responses to visual words versus novel symbol strings. By contrasting each of these conditions to pseudowords, we examined how this reading-related N170 effect generalizes to well-ordered novel letter strings.ResultsA sample-by-sample permutation test computed on word versus symbol ERP topographies revealed differences during two time windows corresponding to the N170 and P300 components. Topographic centroid analysis of the word and symbol N170 demonstrated significant differences in both left-right as well as inferior-superior dimensions. Words elicited larger N170 negativities than symbols at inferior occipito-temporal channels, with the maximal effect over left inferior regions often unsampled in conventional electrode montages. Further contrasts produced inferior-superior topographic effects for the pseudoword-symbol comparison and left-lateralized topographic effects for the word-pseudoword comparison.ConclusionFast specialized perception related to reading experience produces an N170 modulation detectable across different EEG systems and different languages. Characterization of such effects may be improved by sampling with greater spatial frequency recordings that sample inferior regions. Unlike in German, reading-related expertise effects in English produced only partial generalization in N170 responses to novel pseudowords. The topographic inferior-superior N170 differences may reflect general perceptual expertise for orthographic strings, as it was found for words and pseudowords across both languages. The topographic left-right N170 difference between words and pseudowords was only found in English, and may suggest that ambiguity in pronunciating novel pseudowords due to inconsistency in spelling-to-sound mapping influences early stages of letter string processing.

Highlights

  • N170 effects associated with visual words may be related to perceptual expertise effects that have been demonstrated for faces and other extensively studied classes of visual stimuli

  • The topographic left-right N170 difference between words and pseudowords was only found in English, and may suggest that ambiguity in pronunciating novel pseudowords due to inconsistency in spelling-to-sound mapping influences early stages of letter string processing

  • Word-symbol differences in consecutive event-related potential (ERP) maps To assess differential processing of words and symbol strings over time, a Topographic Analysis of Variance (TANOVA, [26]) on non-normalized ERP maps was computed for each time point

Read more

Summary

Introduction

N170 effects associated with visual words may be related to perceptual expertise effects that have been demonstrated for faces and other extensively studied classes of visual stimuli. The N170 is a component of the event-related potential (ERP) peaking between 150 and 200 ms and showing an occipito-temporally negative and fronto-centrally positive topography It is strongly elicited by certain classes of visual stimuli, such as faces [2,3], relative to other visual control stimuli. Investigations of the psychological principles that drive the N170 to respond more strongly to some classes of stimuli over others have demonstrated perceptual expertise effects across several classes of stimuli, including enhanced N170 responses (relative to other object control stimuli) for bird experts viewing birds [4], car experts viewing cars [5], and has even been demonstrated for laboratory-induced expertise with 3D novel figures ("greebles" [6]) These results support a potential relationship between extensive visual experience with a stimulus domain and alterations in visual processes within the first 200 ms of perceptual identification. Neurophysiological studies have shown that skilled adult readers develop fast, perceptual identification processes that are specialized for words and other letter strings, reflected by differences in N170 responses compared to control stimuli, such as symbol strings, that control for visual features [1,8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call