Abstract

ZnO nanorod arrays were grown on a flexible Kapton tape using microwave-assisted chemical bath deposition. High crystalline properties of the produced nanorods were proven by X-ray diffraction patterns and field emission scanning electron microscopy. Additionally, the photoluminescence spectrum showed higher UV peaks compared with visible peaks, which indicates that the ZnO nanorods had high quality and low number of defects. The metal-semiconductor-metal (MSM) configuration was used to fabricate UV and hydrogen gas detectors based on the ZnO nanorods grown on a flexible Kapton tape. Upon exposure to 395 nm UV light, the UV device exhibited fast response and decay times of 37 ms and 44 ms, respectively, at a bias voltage of 30 V. The relative sensitivities of the gas sensor made of the ZnO nanorod arrays, at hydrogen concentration of 2 %, at room temperature, 150 °C and 200 °C, are 0.42, 1.4 and 1.75 respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.