Abstract
Gallium nitride (GaN) high-electron-mobility transistor (HEMT) devices, which have wide application potential from power amplifiers to satellite, need to be thoroughly examined in terms of reliability in order to benefit the superior intrinsic properties of the device. The most critical parameter in the device reliability is the hotspot, or <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{\text {max}}$ </tex-math></inline-formula> , which occurs somewhere on the subsurface and along the channel of the GaN HEMT, which is optically inaccessible due to optical path disability. Therefore, the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{\text {max}}$ </tex-math></inline-formula> value is underestimated in optical measurements, such as the thermographic IR and Raman methods. With 3-D electrothermal simulations, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{\text {max}}$ </tex-math></inline-formula> is obtained close to reality, but it requires a huge computation load and the complex modeling of semiconductor device physics. In 2-D or 3-D thermal simulations that do not use electrothermal simulations, since the self-heating is mostly modeled with a single heat source, neither the correct <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{\text {max}}$ </tex-math></inline-formula> value is obtained nor the effect of bias conditions is considered. To address the aforementioned shortcomings, a hybrid method is demonstrated, which exploits the electrical measurements of GaN HEMT, which RF and reliability engineers often and easily do. It is demonstrated that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{\text {max}}$ </tex-math></inline-formula> can be determined quickly and close to the electrothermal simulations in a GaN HEMT device with a two-heat source method and finite element analysis (FEA) hybrid interaction with respect to various bias conditions. Moreover, the impact of the knee voltage is investigated with different knee-detection techniques. The proposed method provides GaN HEMT reliability engineers with an easy-to-implement alternative to reveal the hotspot location and the value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.