Abstract

Real-time learning needs algorithms operating in a fast speed comparable to human or animal, however this is a huge challenge in processing visual inputs. Research shows a biological brain can process complicated real-life recognition scenarios at milliseconds scale. Inspired by biological system, in this paper, we proposed a novel real-time learning method by combing the spike timing-based feed-forward spiking neural network (SNN) and the fast unsupervised spike timing dependent plasticity learning method with dynamic post-synaptic thresholds. Fast cross-validated experiments using MNIST database showed the high efficiency of the proposed method at an acceptable accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.