Abstract
In this paper, a fast unsupervised deep fusion framework for change detection of multitemporal synthetic aperture radar (SAR) images is presented. It mainly aim at generating a difference image (DI) in the feature learning procedure by stacked auto-encoders (SAEs). Stacked auto-encoders, as one kind of deep neural network, can learn feature maps that retain the structural information but suppress the noise in the SAR images, which will be beneficial for DI generation. Compared with shallow network, the proposed framework can extract more available features, and be favorable for getting better change results. Different with other common deep neural networks, our proposed method does not need labeled data to train the network. In addition, we find a subset of the entire samples that appropriately represent the whole dataset to speed up the training of the deep neural network without under-fitting. Moreover, we design a fusion network structure that can combine ratio operator based method to ensure that the representations of higher layers are better than that of the lower ones. To summarize, the main contribution of our work lies in using of deep fusion network for generation of DI in a fast and unsupervised way. Experiments on four real SAR images confirm that our network performs better than traditional ratio methods and convolutional neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.