Abstract

Tree skeletons play an important role in tree structure analysis and 3D model reconstruction. However, it is a challenge to extract a skeleton from a tree point cloud with complex branches. In this paper, an automatic and fast tree skeleton extraction method (FTSEM) based on voxel thinning is proposed. In this method, a wood–leaf classification algorithm was introduced to filter leaf points for the reduction of the leaf interference on tree skeleton generation, tree voxel thinning was adopted to extract a raw tree skeleton quickly, and a breakpoint connection algorithm was used to improve the skeleton connectivity and completeness. Experiments were carried out in Haidian Park, Beijing, in which 24 trees were scanned and processed to obtain tree skeletons. The graph search algorithm (GSA) was used to extract tree skeletons based on the same datasets. Compared with the GSA method, the FTSEM method obtained more complete tree skeletons. The time cost of the FTSEM method was evaluated using the runtime and time per million points (TPMP). The runtime of FTSEM was from 1.0 s to 13.0 s, and the runtime of GSA was from 6.4 s to 309.3 s. The average value of TPMP was 1.8 s for FTSEM and 22.3 s for GSA, respectively. The experimental results demonstrate that the proposed method is feasible, robust, and fast with good potential for tree skeleton extraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call