Abstract

We present a method to transport Bose-Einstein condensates (BECs) in anharmonic traps and in the presence of atom-atom interactions in short times without residual excitation. Using a combination of a variational approach and inverse engineering methods, we derive a set of Ermakov-like equations that take into account the coupling between the centre of mass motion and the breathing mode. By an appropriate inverse engineering strategy of those equations, we then design the trap trajectory to achieve the desired boundary conditions. Numerical examples for cubic or quartic anharmonicities are provided for fast and high-fidelity transport of BECs. Potential applications are atom interferometry and quantum information processing. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.