Abstract

High-power pulsed magnetron sputtering (HPPMS) plasmas are pulsed discharges, where the plasma composition as well as the fluxes and energies of ions are changing during the pulse. The time resolved energy distribution for Ar <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1+</sup> ions was measured and phase resolved optical emission spectroscopy for the Ar I line at 760 nm was done to get more insight in the transport properties of the plasma forming noble gas. These measurements were performed during HPPMS of titanium with argon at 0.5 Pa. The peak power density during the 50- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="TeX">\(\mu \) </tex-math></inline-formula> s pulses was 1.8 kW/cm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="TeX">\(^{2}\) </tex-math></inline-formula> . In this contribution, we demonstrate how time resolved mass spectrometry and Intensified Charge-Coupled Device, Intensified CCD cameras can be used to shed more light on energy and particle transport in HPPMS-plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call