Abstract

The two-dimensional raw data structure is used for modern pulse-Doppler radars. Fast-time and slow-time processing of radar return signals is performed. The matched filter compresses each received pulse in fast time. The FFT-based spectral processing of the compressed pulses is then performed in slow time. The two-dimensional structure of raw data has specific features in radars with the transmission and reception of pseudorandom amplitude-phase-shift keyed (APSK) signals to a common aerial. It is formed when the coherent processing interval of the APSK signal is divided into subintervals. The article describes the fast-time and slow-time processing of the APSK signal subintervals. The structure of the signal in the subintervals is also analyzed. The choice of the subinterval duration is discussed. The possible energy losses during the processing of the reflected signals are estimated. The results of the processing modeling of the additive sum of APSK signals with different Doppler frequencies are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.