Abstract

The use of spectroscopic Missing Pulse--SSFP (spMP-SSFP) for fast three-dimensional (3D) proton MR spectroscopic imaging (MRSI) at 7 Tesla (T) is demonstrated. Sequence modifications were required regarding the limits of the specific absorption rate as well as hardware limitations with respect to maximum B(1) field strength and B(0) gradient slew rate, as compared to previous studies performed at 3T. The combination of two spatially selective radiofrequency (RF) pulses (with orthogonal slice orientation) and a dual-band chemical shift selective RF pulse for simultaneous water and lipid suppression proved to enable fast 3D MRSI measurements of the brain of healthy volunteers. Using a total measurement time of approximately 8.5 minutes and a nominal and real voxel size of 0.62 cm(3) and 2.6 cm(3), respectively, signals of N-acetyl aspartate, total creatine, choline containing compounds, myo-inositol, and glutamate+glutamine could be detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.