Abstract
We consider a problem of localizing a path-signal that evolves over time on a graph. A path-signal can be viewed as the trajectory of a moving agent on a graph in several consecutive time points. Combining dynamic programming and graph partitioning, we propose a path-localization algorithm with significantly reduced computational complexity. We analyze the localization error for the proposed approach both in the Hamming distance and the destination's distance between the path estimate and the true path using numerical bounds. Unlike usual theoretical bounds that only apply to restricted graph models, the obtained numerical bounds apply to all graphs and all non-overlapping graph-partitioning schemes. In random geometric graphs, we are able to derive a closed-form expression for the localization error bound, and a tradeoff between localization error and the computational complexity. Finally, we compare the proposed technique with the maximum likelihood estimate under the path constraint in terms of computational complexity and localization error, and show significant speedup (100 times) with comparable localization error (4 times) on a graph from real data. Variants of the proposed technique can be applied to tracking, road congestion monitoring, and brain signal processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.