Abstract

Electron transfers and the reactions they initiate have received a considerable attention in the recent years both in the organic and organometallic fields1 Indeed it has been recently recognized that a number of so-thought elementary reactions may involve — or — may be triggered by — single electron transfers. The spreading of these new concepts coincided with the development of new experimental and conceptual tools in electrochemistry. Indeed up to the middle of the seventies most of electrochemical studies were related to the delineation of the basic and elementary chemical acts associated with electron transfers2. The method was then mostly limited to problems involving a single reactive path occuring within time scales larger than a few milliseconds. Yet the basic concepts thus developped have allowed, in the past decade, the extension of the electrochemical approaches to situations which interest and complexity make them particularly adequate to investigate a variety of essential problems in chemical reactivity. Concomitantly the time scale window of the method has been enlarged to the sub-nanosecond region. This together with the inherent simplicity -and low cost aspects — of the technique explain its recent diffusion and adoption by many research groups in the fields of organic or organometallic chemical reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.