Abstract

We propose and demonstrate an optical router by selecting data encoded in massive orthogonal orbital angular momentum (OAM) states carried by collinear optical vortex (OV) beams. By switching the OV grating on a digital micromirror device, we achieve information exchange and multicasting in 49 OAM channels with 1.37 Tbit/s aggregated data capacity. The time-domain characterization of the OAM router shows a fast-switching time of 6.9 μ s. Both the analytical derivations and experimental demonstrations show that the router has signal-to-noise ratios (SNRs) better than 10.1 dB for all tens of OAM channels. The OAM-based optical interconnect technique is a promising solution for networking multiple users with ultrahigh data capacity density in datacenters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.