Abstract

We present a design for a magnetometer capable of operating at temperatures down to 50 mK and magnetic fields up to 15 T with integrated sample temperature measurement. Our design is based on the concept of a Faraday force magnetometer with a load-sensing variable capacitor. A plastic body allows for fast sweep rates and sample temperature measurement, and the possibility of regulating the initial capacitance simplifies the initial bridge balancing. Under moderate gradient fields of ~1 T/m our prototype performed with a resolution better than 1 × 10(-5) emu. The magnetometer can be operated either in a dc mode, or in an oscillatory mode which allows the determination of the magnetic susceptibility. We present measurements on Dy(2)Ti(2)O(7) and Sr(3)Ru(2)O(7) as an example of its performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.