Abstract
Many singular value decomposition (SVD) problems in power system computations require only a few largest singular values of a large-scale matrix for the analysis. This letter introduces two fast SVD approaches recently developed in other domains to power systems for speeding up phasor measurement unit (PMU) based online applications. The first method is a randomized SVD algorithm that accelerates computation by introducing a low-rank approximation of a given matrix through randomness. The second method is the augmented Lanczos bidiagonalization, an iterative Krylov subspace technique that computes sequences of projections of a given matrix onto low-dimensional subspaces. Both approaches are illustrated on SVD evaluation within an ambient oscillation monitoring algorithm, namely stochastic subspace identification (SSI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.