Abstract
AbstractThis study was designed to enable the development of a simple, fast, and environmentally friendly analytical technique utilizing dispersive liquid‐liquid microextraction based on surface floating organic droplets for selective and quantitative enrichment of trace level pesticide contaminants from different fruit juice samples for subsequent detection by high performance liquid chromatography, combined with a diode array detector. The selective extraction was necessitated in order to isolate the seven multiclass pesticide residues frequently occurring in fruit juice samples. The effects of experimental parameters such as pH of sample solution, type and volume of extraction and dispersive solvents, ionic strength and extraction time were optimized. The optimized method was validated using spiked blank sample and satisfactory results for accuracy, with recoveries ranging from 87.23% to 99.45%, with %relative standard deviation between 1.37 and 8.39, precision in terms of %relative standard deviation ≤ 10.78 and linearity at concentration levels from 3 to 1500 ng/ml, which corresponded with correlation coefficients ≥ 0.998. The limits of detection and the limits of quantification were ranged from 1.3×10−2 to 5.3×10−2 and 4.2×10−2 to 1.8×10−1 μg/L, respectively. At the end, the method was successfully applied to analyze real fruit juice samples and target analytes were not detected in real samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.