Abstract

Observation of the kinetics and measurement of the activation energies for gas diffusion in porous materials requires very fast and sensitive sensors. In this work, thin films of metal-organic frameworks (MOFs) with different pore sizes are grown on a surface acoustic wave (SAW) substrate, resulting in very sensitive and specific sensor systems for the detection of various gases at very short time scales. Using specially designed SAW delay lines for the detection, up to 200-nm-wide cubic MOF crystals were grown directly from a solution on the sensitive sensor chip area. One example, MFU-4, exhibits a smallest pore aperture of 2.5 Å and shows a highly sensitive and specific response to CO2, H2, He, NH3, and H2O. It is shown that such a MOF@SAW sensor responds within milliseconds to gas loading and its sensitivity reaches levels as low as 1 ppmv, currently only limited by the gas mixing system. This unique combination of sensitivity and fast response characteristics allows even for real-time investigations of the sorption kinetics during gas uptake and release. As is typical for SAW sensors, the production of the chips is very straightforward and inexpensive and-combined with the unique properties of the MOFs with their tunable pore sizes and adjustable internal surface properties-holds promise for different sensor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.